论文部分内容阅读
Extremely low frequency magnetic field (ELFMF) produced by power lines and household electric appliances has been associated with increased incidence of cancers, as was suggested by several epidemiological studies[1]. To test the genotoxic effects of ELFMF, the induction of micronuclei by exposure to ELFMF and/or X-rays was investigated by cytokinesis-block method in cultured Chinese Hamster Ovary (CHO) cells. Approximately 4×105 cells were plated in 10cm dishes, following exposure to an ELF magnetic field (60Hz, 5 mT) for 24h. The cells were irradiated to 1 Gy by X-rays. After the irradiation, cytochalasin B was added to the medium at a final concentration of 3 μg / mL. The cells were then exposed to an ELF magnetic field or placed in a normal incubator for 18 h, which is 1.5 times the length of their cell cycle. The micronuclei derived from acentric fragments or from whole chromosomes were evaluated with the help of immunofluorescent staining using antikinetochore antibodies from the serum of scleroderma (CREST syndrome) patients[2,3].Statistically, no significant difference in the frequency of binucleated cells carrying micronuclei was observed between CHO cells cultured in the normal incubator and those placed in the exposure system for 24h. Following X-ray irradiation, the number of binucleated cells carrying micronuclei increased significantly (p< 0.01). Exposure to an ELF magnetic field for 24 h before the X-ray irradiation or for 18 h after X-ray-irradiation did not affect the number of X-ray-induced micronuclei. Among the micronuclei induced by X-ray-irradiation, only a small number were kinetochore-positive (approximately 4 %). The number of kinetochore-positive micronuclei was significantly increased in the cells treated with X-ray irradiation followed by ELFMF exposure or M+X+M treated cells (exposure to ELF magnetic field before and after X-ray irradiation), but not in the cells treated with ELFMF exposure before X-ray irradiation compared with treatment with X-rays alone. The number of spontaneous kinetochore-positive and negative micronuclei was not affected by exposure to ELFMF alone.The experimental results suggest that although exposure to ELFMF has no effects on the number of spontaneous and X-ray-induced micronuclei, ELFMF exposure after the X-ray irradiation may affect chromosome loss and chromosome fragmentation during the process of X-ray-induced micronuclei information in CHO cells.