论文部分内容阅读
金属酶催化的高效性和选择性来源于第一配位环境金属催化中心和第二配位环境非共价相互作用力的协同作用。针对金属催化中心构效关系的研究已有大量报道,相比之下,有关非共价相互作用的研究尚不够充分。金属酶的非共价作用力,包括氢键、静电相互作用、范德华力和疏水相互作用等产生于第二配位环境中的氨基酸残基。阐述第二配位环境中氨基酸残基作用的首要障碍来自于复杂并难以界定的分子内和分子间的相互作用网络。制备包含非共价相互作用的金属酶模拟物是攻克这一难题行之有效的方法,它不但有利于理解非共价相互作用和金属离子之间的协同作用,而且有助于发展可应用于工业、医药、生物技术等领域的仿生催化剂。本文按照非共价弱相互作用的类型,对近期报道的典型案例进行综述。文中阐述了基于简单多齿配体,如联吡啶、三联吡啶、环胺、卟啉等,和基于超分子配体,如功能化的环糊精和杯芳烃等的金属酶模型物。在讨论模型物之前,本文对天然金属酶中的非共价相互作用简略探讨。
The efficiency and selectivity of the metalloenzyme catalysis are derived from the synergistic effect of the noncovalent interaction force between the first coordinating environment metal catalysis center and the second coordinate environment. There have been a lot of reports on the structure-activity relationship of metal-catalyzed centers. In contrast, the research on non-covalent interactions is not yet sufficient. Non-covalent forces of metalloenzymes, including hydrogen bonds, electrostatic interactions, van der Waals forces and hydrophobic interactions, result from amino acid residues in the secondary coordination environment. The primary barrier to elucidating the role of amino acid residues in the second coordination environment comes from a complex and intractable network of intramolecular and intermolecular interactions. The preparation of metallo-enzyme mimics containing non-covalent interactions is an effective method to overcome this problem, which not only helps to understand the synergy between non-covalent interactions and metal ions but also helps to develop methods that can be applied to Industrial, pharmaceutical, biotechnology and other fields of biomimetic catalyst. In this paper, based on the types of non-covalent weak interactions, the recent case reports are reviewed. In this paper, metallo-enzyme model based on simple polydentate ligands, such as bipyridyl, terpyridine, cyclic amine, porphyrin and the like, and based on supramolecular ligands such as functionalized cyclodextrins and calixarenes are described. Before discussing model objects, this article briefly discusses the non-covalent interactions in native metalloenzymes.