论文部分内容阅读
金融危机是一个非线性的复杂过程,BP神经网络对非线性系统具有很强的模拟能力。针对BP神经网络有收敛速度慢、易陷入局部极小值和振荡等缺点,利用改进的PSO算法优化BP神经网络的权值和阈值,能有效地改善BP神经网络的缺点。对金融风险实例分析的结果表明,综合改进的BP算法相对于BP神经网络算法能明显加快网络的收敛时间,具有较快的收敛速度和较高的诊断准确度,用于金融风险预警是可行的,证实了该方法具有一定的实际应用价值。