论文部分内容阅读
目的在微小飞行器系统中,如何实时获取场景信息是实现自主避障及导航的关键问题。本文提出了一种融合中心平均Census特征与绝对误差(AD)特征、基于纹理优化的半全局立体匹配算法(ADCC-TSGM),并利用统一计算设备架构(CUDA)进行并行加速。方法使用沿极线方向的一维差分计算纹理信息,使用中心平均Census特征及AD特征进行代价计算,通过纹理优化的SGM算法聚合代价并获得初始视差图;然后,通过左右一致性检验检查剔除粗略视差图中的不稳定点和遮挡点,使用线性插值和中值滤波对视差图中的空洞进行填充;最后,利用GPU特性,对立体匹配中的代价计算、半全局匹配(SGM)计算、视差计算等步骤使用共享内存、单指令多数据流(SIMD)及混合流水线进行优化以提高运行速度。结果在Quarter Video Graphics Array(QVGA)分辨率的middlebury双目图像测试集中,本文提出的ADCC-TSGM算法总坏点率较Semi-Global Block Matching(SGBM)算法降低36.1%,较SGM算法降低28.3%;平均错误率较SGBM算法降低44.5%,较SGM算法降低49.9%。GPU加速实验基于NVIDIA Jetson TK1嵌入式计算平台,在双目匹配性能不变的情况下,通过使用CUDA并行加速,可获得117倍以上加速比,即使相较于已进行SIMD及多核并行优化的SGBM,运行时间也减少了85%。在QVGA分辨率下,GPU加速后的运行帧率可达31.8帧/s。结论本文算法及其CUDA加速可为嵌入式平台提供一种实时获取高质量深度信息的有效途径,可作为微小飞行器、小型机器人等设备进行环境感知、视觉定位、地图构建的基础步骤。