论文部分内容阅读
The layered semiconducting transition metal dichalcogenides (s-TMDs) have attracted considerable interest as the channel material for field-effect transistors (FETs).However,the multilayer s-TMD transistors usually exhibit considerable threshold voltage (Vth) shift and ambipolar behavior at high source-drain bias,which is undesirable for modem digital electronics.Here we report the design and fabrication of double feedback gate (FBG) transistors,i.e.,source FBG (S-FBG) and drain FBG (D-FBG),to combat these challenges.The FBG transistors differ from normal transistors by including an extra feedback gate,which is directly connected to the source/drain electrodes by extending and overlapping the source/drain electrodes over the yttrium oxide dielectrics on s-TMDs.We show that the S-FBG transistors based on multilayer MoS2 exhibit nearly negligible Vth roll-off at large source-drain bias,and the D-FBG multilayer WSe2 transistors could be tailored into either n-type or p-type transport,depending on the polarity of the drain bias.The double FBG structure offers an effective strategy to tailor multilayer s-TMD transistors with suppressed Vth roll-off and ambipolar transport for high-performance and low-power logic applications.