一种基于路径相似度的蚁群算法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:b56240320
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了路径相似度的概念,并根据较优可行解与最优解的相似度,来进行路径选择和信息素更新,以求能更快加速收敛和防止早熟、停滞现象。该算法根据截之间的相似度,自适应地调整路径选择策略和信息量更新策略。基于旅行商问题的实验验证了算法比一般蚁群算法具有更好的全局搜索能力、收敛速度和解的多样性。
其他文献
实时准确的交通流量预测是智能交通诱导和交通控制实现的前提和关键。针对城市交通流的特点,建立了模糊神经网络预测模型,并将全局优化的蚁群算法和粒子群算法组成递阶结构优化
通过对比航线配船问题与TSP问题的异同,成功将蚁群算法(ACA)用于航线配船,为求解大规模非线性整数规划问题提供了一条新的途径。
介绍了一种嵌入变尺度方法和禁忌搜索的混沌优化的蚁群优化法(ACA-HCO),通过产生随机性的混沌变量,加入智能性禁忌表,采用变尺度法,加速搜索过程,混沌变量的随机性和遍历性有效