论文部分内容阅读
最小二乘支持向量机方法(LSSVM)在处理小样本、高维数、非线性的问题时,具有求解速度快、易于描述非线性关系的优良特性。但是,该方法得到的模型拟合精度和泛化能力依赖于其相关参数,因此,提出基于粒子群优化算法(PSO)的LSSVM参数优选方法。最后,用该模型对巷道围岩松动圈进行了预测研究。结果表明,PSO优化的LSSVM模型具有收敛速度快、计算精度高的特点,说明该模型是合理、有效的。