Atomic level engineering of noble metal nanocrystals for energy conversion catalysis

来源 :能源化学 | 被引量 : 0次 | 上传用户:firefly_xk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphol-ogy,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of noble metals largely restrict their industrial applications.Along with the development of characterization techniques,theoretical calculations,and advanced material synthesis methods,modu-lating the electrocatalytic properties of noble metal nanocrystals at the atomic scale (e.g.,monolayer/sub-monolayer,single-atom alloy,ultrafine structure) has been flooding out.Engineering noble metal nanocrystals at the atomic level could not only immensely improve the noble metal atom utilization effi-ciency and lower the cost,but also boost the catalytic performance.In this review,we summarize the recent advanced progresses of regulating the noble metal nanocrystals at the atomic scale towards energy conversion application.Then,the challenges and perspectives of designing noble metal nanocrys-tals at the atomic scale in the future are discussed and considered.It is expected that this review will inspire scientists to further study precious metal-based materials for energy-oriented catalysis.
其他文献
Regulation of the Li2CO3 byproduct is the most critical challenge in the field of non-aqueous Li-O2 bat-teries.Although considerable efforts have been devoted to preventing Li2CO3 formation,no approaches have suggested the ultimate solution of utilizing t
Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO2 hydrogenation towards methanol.In this work,the reaction mechanism for CO2 hydrogenation to metha-nol has been investigated on a model Ni/In2O3 catalyst,i
Lithium metal batteries have obtained increasing interest due to their high specific capacity.Nonetheless,the growth of lithium dendrites brings safety risks to batteries and further deteriorates the performance.Herein,we explore diethyl phenylphosphonite
Metal halide perovskites are emerging as the most promising candidate for the next-generation Photovoltaics (PV) materials,due to their superior optoelectronic properties and low cost.However,the resulting Perovskite solar cells (PSCs) suffer from poor st
Methanol steam reforming (MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an extremely active and robust catalyst.H
Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrica-tion of printed microelectronics,owing to its advanced merits of low-cost,facile operability and scalability.However,its large-scale application in pr
Design of the catalyst for efficient water dissociation and hydrogen recombination is paramount in enhancement of the alkaline water electrolysis kinetics.Herein,we reported a delicate hierarchical(VO)2P2O7-Ni2P@NF (VPO-Ni2P@NF) hybrid catalyst that opera
Perovskite LaCoO3 is being increasingly explored as an effective low-cost electrocatalyst for the oxygen evolution reaction (OER).Sr doping in LaCoO3 (La1-xSrxCoO3) has been found to substantially increase its catalytic activity.In this work,we report a d
Flame-retardant polymer electrolytes (FRSPEs) are attractive due to their potential for fundamentally set-tling the safety issues of liquid electrolytes.However,the current FRSPEs have introduced large quantity of flame-retardant composition which cannot
Liquid junction solar cell (LJSC) with vertically silicon nanowires (SiNWs) as the primary photosensitizer,co-sensitized with luminescent and narrow gap CdTe nanoparticles,and cuboidal microstructures of zinc tetraphenyl porphyrin (ZnTPP) dye offers broad