论文部分内容阅读
随着物流网络的快速扩张,如何在异构系统中交换物品信息已经成为影响物流效率的重要因素,而社交网络与物流网络都具有异构的特征,因此将物流网的各个节点看作是社交网络的社区,利用多关系社交网络社区挖掘算法来寻找各个异构的物流网络中固有的社区结构,从而发现物流网中隐藏的规律并进行路径优化等网络行为是可行的。通过对4 000例物流数据的对比试验,得出基于相似度的社区挖掘算法在准确率、算法复杂度和效率上都优于K均值算法和回归算法。