论文部分内容阅读
对于基于梯度自适应的盲源分离算法,认真选择步长参数以达到好的分离性能是非常必要的。如果为加快收敛速度而增大步长因子,将会导致大的稳态误差,甚至引起算法发散,因此固定步长因子无法解决收敛速度和稳态误差之间的矛盾。本文为EASI算法提出了一种变步长的解决方案。通过建立步长因子与分离矩阵相互差异之间的非线性关系,加快了收敛速度,减小了失调误差。计算机仿真结果与理论分析相一致,证实了该算法明显优于传统的EASI算法。