论文部分内容阅读
为解决触觉传感器非线性误差大的问题,本文提出了一种基于动态密度聚类改进的自适应多种群遗传算法(IMPGA)。IMPGA算法通过对个体相似度的动态聚类分析生成多个子种群,各子种群采用自适应交叉、变异概率并行进化,提高了搜索全局最优解的效率。通过动态邻域搜索策略提高算法局部搜索的能力,通过移民算子保持每个种群的多样性和进化动力。实验表明通过IMPGA算法优化的BP神经网络能够有效减小触觉传感器非线性拟合误差,鲁棒性能好。