论文部分内容阅读
针对目前传统车道线识别算法在复杂道路环境中识别困难的问题,提出了一种基于机器视觉的智能车辆鲁棒车道线识别方法。为消除噪声干扰以及提高特征检测效率,设计了一种自适应道路感兴趣区域(ROI)计算方法,针对不同情况的车道可自适应地将车道区域与非车道区域分离。对待检测目标采用改进划分角度的检测算子进行车道线特征检测,同时对车道图像有针对性地采用多色域阈值处理,以提高算法的环境适应性。对转换视角后的车道线采用DBSCAN聚类及NURBS曲线进行拟合,并利用随机抽样一致法优化车道线模型以滤除误匹配。实验结果表明