论文部分内容阅读
以干制红枣的黑斑、破头以及分类难度较高的干条3种病害图像作为研究对象,分别采用颜色矩和灰度共生矩阵提取颜色、纹理特征中的14维特征向量,然后采用主成分分析法对特征向量进行优化,得到4个主因素特征向量作为支持向量机输入。采用交叉算法确定最优支持向量机惩罚参数c和核函数参数g对支持向量机多分类模型进行训练,利用训练后的模型对红枣进行多分类试验。结果证明,该方法能够对红枣黑斑、破头和干条3种缺陷果进行快速准确的识别,识别率分别为93.3%,100.0%和96.6%,总识别率可达97.2%,且分类效率高。