论文部分内容阅读
针对不同状态的浮选泡沫图像之间纹理结构相似、颜色差异不明显的问题,提出一种基于色调、饱和度和亮度(HSV)颜色空间的完全局部二进制模式(CLBP)纹理提取的浮选泡沫状态识别方法。首先使用双域去噪在保留纹理细节的同时滤除图像噪声;然后转换为HSV图像,在H、S和V颜色分量上分别提取三个尺度的CLBP纹理特征,将提取的纹理特征归一化后线性排列,建立高维度的纹理分类模型;最后通过一对一模式的支持向量机分类器对四类泡沫状态的样本集进行纹理提取后的分类训练与测试。结果表明,该方法对不同浮选泡沫状态的分类正确率