论文部分内容阅读
针对多Markov链用户浏览预测模型分类算法的时间复杂度过高问题,提出一种基于动态分类的Markov用户浏览预测模型。该模型通过学习提取用户浏览特征,利用这些特征对用户浏览路径进行分类,实现预测并动态更新用户浏览特征。实验结果表明,该模型可明显降低用户浏览路径预测的时间,并得到较为准确的预测结果。