论文部分内容阅读
为了更好地改善多目标粒子群优化算法的收敛性和多样性,提出一种基于扩容和双距离决策的多目标粒子群优化算法。利用扩容的方法对目标空间中目标函数值的上下限进行扩大,得到新的上下限后再建立网格,这样可以计算出边界点的坐标。在小网格中选择引导粒子或者劣质粒子时,利用小网格中粒子到理想点和当前小网格最优点的距离进行决策筛选,这样充分利用目标空间中的信息来对粒子的优先级进行判断。对新的粒子进行差分变异,增加了整体的多样性,并通过阈值控制其变异的频率。将算法和当前具有代表性的多目标粒子群优化算法进行对比实验,提出的