GPU加速的差分进化粒子滤波算法

来源 :计算机应用研究 | 被引量 : 8次 | 上传用户:music5700
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决实时系统中粒子滤波的计算复杂性问题,提出了一种零bank冲突并行规约的差分进化粒子滤波方法。该方法首先分析了并行差分进化粒子滤波算法在GPU中的内存访问模式,根据粒子滤波器的均方根误差与内存访问bank(存储体)冲突度成正比的关系,提出了一种去除bank冲突的有填充寻址的差分进化粒子滤波算法,降低了计算复杂度。将该算法在NVIDIA GTX960 GPU中实现,与串行差分进化粒子滤波算法进行比较。实验表明,随着粒子数增加,计算量以指数增加,采用GPU加速的跟踪算法的执行时间明显减少,有效提高
其他文献
DBSCAN聚类算法使用固定的Eps和min Pts,处理多密度的数据效果不理想,并且算法的时间复杂度为O(N2)。针对以上问题,提出一种基于区域划分的DBSCAN多密度聚类算法。算法利用网格相对密度差把数据空间划分成密度不同的区域,每个区域的Eps根据该区域的密度计算自动获得,并利用DBSCAN算法进行聚类,提升了DBSCAN的精度;避免了DBSCAN在查找密度相连时需要遍历所有数据的不足,从而