论文部分内容阅读
针对网络流量的混沌性特点以及传统神经网络处理网络流量预测问题易陷入局部极小导致预测精度不高的问题,提出在相空间重构基础上,采用粒子群算法(PSO)优化Elman神经网络初始参数的网络流量预测模型。首先对网络流量时间序列进行相空间重构,将重构后的流量序列作为模型的输入;再利用PSO算法全局搜索能力对Elman神经网络初始参数进行优化;最后利用训练好的Elman神经网络对网络流量进行预测。仿真结果表明,相比其他流量预测方法,基于PSOElman模型的网络流量预测提高了预测准确率。