Precise tuning of low-crystalline Sb@Sb2O3 confined in 3D porous carbon network for fast and stable

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:linebarrel2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Metal antimony (Sb) is a promising anode material of potassium-ion batteries (PIBs) for its high theoreti-cal capacity but limited by its inferior cycle stability due to the serious volume expansion during cycling.Herein,we design and construct a kind of low-crystalline Sb nanoparticles coated with amorphous Sb2O3 and dispersed into three-dimensional porous carbon via a strategy involving NaCl template-assisted in-situ pyrolysis and subsequent low-temperature heat-treated in air.Significantly,the crystallinity and ratio of Sb/Sb2O3 have been precisely tuned and controlled,and the optimized sample of HTSb@Sb2O3@C-4 displays a high reversible specific capacity of 543.9 mAh g-1 at 03 A g-1,superior rate capability and excellent cycle stability (~273 mAh g-1 at 2 A g-1 after 2000 cycles) as an anode of PIBs.The outstanding potassium-ion storage performance can be ascribed to the appropriate crystallinity and the multiple-buffer-matrix structure comprising an interconnected porous conductive carbon to relieve the volume changes and suppress the aggregation of Sb,a Sb nanoparticle core to shorten the ion transport path-ways and decrease the mechanical stress,and a low-crystalline Sb2O3 as the shell to consolidate the interface between Sb and carbon as well as facilitate the rapid electron transport.The dynamic analysis shows that the composite is mainly controlled by pseudocapacitance mechanism.This work provides a novel thought to design high-performance composite electrode in energy storage devices.
其他文献
The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials (NMs) via energetic localized surface plasmon resonance (LSPR) in visible-light region has been explored in recent years.However,the low photoinduced electron tra
Although a variety of processing routes were developed to in-situ manipulate microstructure for fabri-cating high-performance Ti-6Al-4V alloy by directed energy deposition (DED),the in-situ microstructural control ability has been limited and lead to a na
研究了硅酸钠对碱性低氢焊条性能的影响.试验结果表明,适当增加药皮中的硅酸钠含量,可使焊条套筒长度减小,熔渣黏度减小,立焊笔尖倾向减小,飞溅稍微增大,而焊条熔敷金属的化学成分、力学性能和扩散氢含量的变化则不明显.故可以通过调整碱性低氢焊条药皮中硅酸钠的含量来优化焊接工艺性.
Myocardial infarction (MI) is one of the common cardiovascular diseases that occurs with a blockage in one or more of the coronary arteries to lead to the damage of the myocardium,resulting in a life-threatening condition.To repair the damaged myocardium
综述了国内外高温钛合金焊接研究的发展现状.总结了高温钛合金的焊接特点及其对高温钛合金焊接接头热强性与热稳定性、蠕变疲劳抗性的一致性、均匀性和稳定性的要求,介绍了闪光对焊、线性摩擦焊、电子束焊接和激光焊接技术的研究现状,并对高温钛合金焊接未来研究方向进行了展望.
氧化石墨烯(GO)具有比表面积高、阻隔性好等特点,将其作为填料加入涂料体系中可增强涂层的防腐性能.但是,氧化石墨烯片层间存在的相互作用使其容易形成聚集体,这妨碍了其阻隔性能的充分发挥,严重的聚集甚至会导致涂层机械性能变差.除了氧化石墨烯,其他纳米材料在防腐涂料中同样应用广泛,并且显示出与氧化石墨烯功能互补的特点.研究表明,对氧化石墨烯和其他纳米材料进行表面改性,获得的纳米杂化物能够使防腐涂料获得更好的防腐效果.基于此,总结了氧化石墨烯基纳米杂化物体系在提高涂料防腐性能方面的研究进展.并对其未来发展趋势进行
The development of high-efficiency photocatalysts is the primary goal in the field of photocatalytic an-tibacterial research.In this work,the GaN∶ZnO solid solution nanoparticles (NPs) photocatalyst with strong visible absorption and large specific surfac
1.IntroductionrnRefrigeration plays an essential role in nowadays society.How-ever,conventional refrigeration based on vapor compression cool-ing shows high energy consumption,complicated structure and even environmental pollution.Searching for an environ
期刊
High-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics,with different contents (0,5,10,and 20 vol.%) of SiC whiskers (SiCw),were fabricated by spark plasma sintering using raw powders synthesized via car-bothermal reduction.The application of a uniaxial compa
Specially designed Mg-Cu-Al alloys were prepared for the application in fracturing balls.In comparison to Mg-2.5Cu alloy,Mg-2.5Cu-6.0Al alloy exhibits an improved compressive strength of 378 MPa and com-pressive strain of 27g,combined with a high degradat