核范数随机矩阵求解新方法及其RPCA应用

来源 :计算机技术与发展 | 被引量 : 6次 | 上传用户:ligang_nc2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
RPCA(稳健主成分分析)从原始观测数据中恢复低秩成分和稀疏成分。RPCA常用交替方向法迭代求解,算法的效率取决于核范数优化求解,即SVD分解。而RPCA在计算机视觉应用中,图像和视频等巨大的数据量为大规模数据SVD分解带来了很大困难。采用随机矩阵算法对SVD分解进行改进,分别为计数缩略算法、标准随机k-SVD算法和快速随机k-SVD算法。主要是对原有大规模数据矩阵进行降维随机采样,使用随机投影算法得到原数据矩阵的一个近似,对这个近似矩阵进行QR分解,得到对应的酉矩阵。对酉矩阵进行相关操作,得到与原
其他文献