论文部分内容阅读
目前在文本分类领域较常用到的特征选择算法中,仅仅考虑了特征与类别之间的关联性,而对特征与特征之间的关联性没有予以足够的重视,这导致了特征之间预测能力的相互削弱,无法选出最有效的特征。提出了一种新的用于文本分类的特征选择算法(CMIM),它可以帮助选出区分能力强、弱相关的特征。经实验验证,CMIM比传统的特征选择算法具有更好的性能。