论文部分内容阅读
交通异常情况检测一直是交通管理中的重要任务,其在智能交通系统中显得尤为重要。传统的检测方法首先对目标物体(行人和车辆)进行区分,然后再对提取的车辆进行轨迹异常判断。在车流量日益加剧的今天,此种方法增加了计算机的运算复杂度。针对上述算法计算量过于复杂的问题,本文提出了基于像素点的背景方法,首先结合隐含马尔可夫模型(Hidden Markov Model)和共发模型(Co-occurences model),对视频中的异常像素点进行判断,然后通过仿三维模型车辆进行识别的方法,对由异常像素点组成的车辆进行