间歇工作的空间斯特林制冷机制冷时长预测

来源 :应用科技 | 被引量 : 0次 | 上传用户:kaixun520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对空间遥感任务中,光电探测器配载的斯特林制冷机制冷时长的预测问题,提出了一种使用自回归积分滑动平均模型(ARIMA)与人工神经网络(ANN)模型相结合的预测方法。该方法采用时间序列的经典模型,将时间序列分解为趋势项与波动项的加和,采用ARIMA和ANN模型分别进行趋势项预测和波动项预测,并根据斯特林制冷机的间歇性工作模式特点对ARIMA模型进行改进。最后,通过在真实数据上与其他方法的对比实验,验证了本文提出方法的有效性。
其他文献
为提高未知雷达辐射源的分选正确率并且保证分选时间,提出一种正弦差值傅里叶变换和第六维小波包特征提取的聚类分选方法。首先利用正弦插值变换将接收到的雷达到达时间序列变