论文部分内容阅读
针对年龄变化对人脸识别率影响的问题,结合生成式对抗网络(Generative Adversarial Network,GAN)与深度特征迁移提出一种跨年龄人脸生成方法 DFM-GAN(Depth Feature Migration GAN),并进行跨年龄模拟人脸验证实验研究。首先通过卷积编码器将真实样本映射到特征向量,然后利用反卷积生成器将向量投影到独热编码年龄条件下的人脸集合,通过在特征空间中迁移数据库样本人脸纹理风格、语义特点等属性,模拟生成待检人员在不同年龄段的面部图像,减少与数据库样本之间的