基于FPGA的卷积神经网络浮点激励函数实现

来源 :微电子学与计算机 | 被引量 : 0次 | 上传用户:swqsswqs19760308
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卷积神经网络因深度学习概念的提出再一次被研究人员所重视.激励函数是卷积神经网络的一个重要组成部分,选取了sigmoid函数作为实验对象.讨论了当前几种可行的逼近方法,最终采用分段四阶多项式拟合sigmoid函数.在FPGA上使用Verilog硬件描述语言设计了并行电路,并采集了数据集进行FPGA与CPU版本caffe库进行运算效率对比.实验结果表明,此种方法误差小效率高,FPGA在深度学习领域有着广阔的应用前景.
其他文献
针对传统的检测方法一直存在噪声影响严重,导致检测结果不准确的问题.提出基于arm-linux机器视觉的图像特征点快速检测方法,首先利用机器视觉技术拍摄目标图像信息,通过arm-linux系统对目标图像信息进行特征点分析提取、小波去噪等进一步处理;再依据图像处理结果建立Facet模型,计算求解图像特征点二阶方向导数,获取图像特征点二阶方向导数极小值小于零的像素点作为提取的图像特征点,通过对极大值的归
为了提高传统的基于图割的立体匹配算法的鲁棒性,提出一种基于图像增强的图割立体匹配方法,传统算法是在图像灰度值的基础上构建能量函数,该方法加入了图像的梯度值来构建能量函数,然后将基于二值化标号函数的α扩展算法和KV最大流算法结合起来求解能量函数.由于梯度对于图像中的噪声、局部光照具有鲁棒性,因此该算法在一定程度上增加了传统GC算法的鲁棒性,最后通过仿真和实验验证了算法的有效性.
针对现有IP网络路由自愈方法存在的不足,提出一种考虑负载均衡的多下一跳路由自愈方法.首先设计基于距离矢量路由协议的多下一跳路由生成算法,改进了节点可用下一跳的生成策略;然
为了改善信息系统的安全态势估计效果,提出了自回归滑动平均和相关向量机的信息系统安全态势估计模型(ARIMA-RVM).该模型收集大量信息系统安全的历史数据,然后采用自回归滑动平