论文部分内容阅读
目前基于浮动车的城市交通信息采集通常采用等间距进行采样,无法根据道路网络几何条件和状态的差异进行合理的采样间隔优化。针对现有采样算法的不足,本文提出了一种面向实际道路网络的浮动车采样间隔优化方法。首先通过构建四叉树模型对城市道路网络进行划分,确定空间采样分辨率,然后利用历史轨迹对浮动车的速度进行短时预测,最后在不影响空间采样分辨率的基础上实时动态优化采样间隔,在交通信息的精度与信息的采集成本之间取得平衡。通过仿真试验的定性定量分析,新算法能够在不同复杂程度的道路网络情况下动态调整采样间隔,不仅确保了