论文部分内容阅读
针对目前在桥梁地段CRTSⅠ型板式无砟轨道凸台周围树脂离缝,建立CRTSⅠ型板式轨道力学模型,采用可压缩超弹单元模拟树脂层,分析不同扣件阻力、轨道板与CA砂浆间的摩擦阻力条件下的填充树脂层受力。结果表明:在纵向荷载作用下,一旦树脂层发生塑性变形,随着荷载消失和温度下降,树脂层将无法完全回弹,因而产生离缝,并在梁端转角和列车振动荷载作用下进一步发展;在扣件纵向阻力较大时,树脂层会从轨道板下表面与树脂层相接触的位置剪切破坏;轨道板与CA砂浆层之间的摩擦阻力对树脂层的压缩位移和剪切应力的影响不大。“,”The open joints between resin layer and convex shape platform of CRTSⅠ slab ballastless track are located on the bridge section. This paper establishes a CRTS Ⅰ slab ballastless track dynamic model to analyze the longitudinal force ofresin layer and simulates the fastening force in different conditions and friction with finite element method to analyze the pressure of resin layer. The results show that when the resin layer experiences plastic deformation on account of the longitudinal force, the resin layer will not be fully rebound along with the disappearance of load and temperature drop, resulting in open joints. And the open joints develop further under the effect of beam-end rotation angle and train vibration load. In case of larger longitudinal resistance , the resin layer is broken by shear at the contact position between the lower surface of the track slab and the resin layer. The change of friction has small effect on the compression displacement and the shear stress of the resin layer.