双源CT各向同性技术在内听道解剖研究中的应用

来源 :中国辐射卫生 | 被引量 : 0次 | 上传用户:chunlai_zhang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的探讨双源CT各向同性技术在内听道解剖研究中的价值。方法应用双源CT对402例正常志愿者行颞骨薄层扫描,多平面重建,观察内听道的形态,并对各相关径线进行测量。结果经两位从事影像阅片工作多年医师评估,所有图像内听道结构显示清晰,内听道形态中平行管状699耳,喇叭口状53耳,壶腹状50耳,不规则型2耳。内听道长度为(9.81±1.83)mm,内听道底管径(最大径×最小经)为(5.08±0.74)mm×(3.25±0.61)mm,中段管径(最大径×最小经)为(5.04±0.96)mm×(4.23±0.79)mm,内耳门区前后径(5.05±1.05)mm,内耳门区上下径(5.66±1.20)mm。结论DSCT在各向同性方面的优势,能够从不同角度多方位观察内听道的空间立体形态,在此基础上对其相关径线进行精确测量,真正实现了活体观测。 Objective To investigate the value of dual-source CT isotropic technique in the study of internal auditory canal anatomy. Methods Dual-source computed tomography (CT) was used to scan 402 cases of normal volunteers with multi-planar reconstruction of the temporal bone. The shape of the internal auditory canal was observed and the related diameters were measured. Results The results of two years of radiologists engaged in radiologists showed that the structure of auditory canal was clear in all the images. The shape of the auditory canal was 699 parallel tubes, 53 trumpets, 50 ampullaetes and 2 irregular ears. The length of the internal auditory canal was (9.81 ± 1.83) mm, and the diameter of the internal auditory canal bottom was (5.08 ± 0.74) mm × (3.25 ± 0.61) mm. The diameter of the middle segment (the largest diameter × the smallest one) (5.04 ± 0.96) mm × (4.23 ± 0.79) mm, the anterior and posterior diameter of the inner ear door (5.05 ± 1.05) mm and the diameter of the inner ear door (5.66 ± 1.20) mm. Conclusion The advantages of DSCT in isotropy can be observed from different perspectives in different directions to observe the spatial stereoscopic morphology of the internal auditory canal. On this basis, the accurate measurement of the related radial lines can be achieved.
其他文献
骨质疏松是一种以骨量减少,骨组织的微结构破坏,骨骼的脆性增加和易发生骨折为特征的全身性代谢性骨骼疾病。原发性骨质疏松常发生于绝经后妇女(绝经后骨质疏松)及老年人(老年性骨
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清华大学发明人:隋森芳文摘:本发明属于生物技
本文提出一种新的海量碎片化网络大数据中有效数据快速提取与恢复方法,对海量碎片化网络大数据中有效数据快速提取问题进行描述,通过Hash表完成对多个单数据流统计结果的处理
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清华大学发明人:隋森芳文摘:本发明属于生物技