论文部分内容阅读
提出一种新的递推最小二乘支持向量回归估计算法(RLS-SVR),该算法具有实时性高、更新速度快的特点.充分应用RLS-SVR在线学习和训练的实时性,避免辨识模型的维数过高而降低估计精度,本文进一步提出了基于RLS-SVR的混合训练—估计辨识结构.TE过程的组分软测量建模和预报验证了该方法的有效性和优越性.*