论文部分内容阅读
针对传统集装箱箱号定位精度差,效率低等问题,提出一种基于YOLOv3算法改进的深度神经网络,实现对集装箱箱号的快速定位。在对采集到的集装箱图片进行预处理后,通过聚类得到网络训练所需要的初始先验框尺寸,并针对集装箱号码定位的特点,简化了网络模型的输出和网络训练的损失函数,实现更加高效、精确的集装箱箱号定位。实验结果表明:基于改进YOLOv3算法的集装箱箱号的定位方法,具有高准确率与强实时性,定位的准确率高达98. 5%,同时可达26. 23 fps的定位速率,整体的实时性和准确率均可满足实际应用的需求。