论文部分内容阅读
联合概率数据关联(JPDA)算法在解决多目标跟踪时需要目标准确的动力学模型,动力学模型失配在多机动目标跟踪中时常发生,而作为有效的解决方法之一——强跟踪滤波(STF)是针对无杂波环境下的单机动目标设计的。为了提高杂波环境下多机动目标跟踪精度,提出一种联合概率数据关联强跟踪滤波(JPDA-STF)算法。该算法为了能够实现各个目标的渐消因子计算,采用对与目标关联的量测进行加权融合的方式获取目标新息协方差,其中,量测权重的计算则是通过JPDA的方式获取。通过各目标渐消因子获取状态预测协方差,随后在卡尔曼滤