论文部分内容阅读
采用近红外光谱在主成分空间的距离作为样本相似性的判据,建立了一种用于近红外光谱定量分析的局部建模方法。该方法首先对校正集的光谱进行主成分分析(PCA),然后基于主成分空间中预测样本与校正集样本的距离选择校正子集并建立局部偏最小二乘(PLS)回归模型。对欧氏距离和马氏距离的比较表明,欧氏距离可以更好地表达样本之间的相似性。将所建立的方法用于烟草样品中氯和尼古丁含量的测定,结果表明局部建模方法比常用的全局建模方法具有更好的预测准确性,特别是在低含量成分的预测中具有明显优势。