快递暴力分拣行为视觉识别系统

来源 :包装工程 | 被引量 : 0次 | 上传用户:cqt19900112
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的为实时监测快递分拣过程中粗暴对待包裹的行为,设计一款基于树莓派+EdgeTPU的快递暴力分拣人体行为视觉识别系统。方法基于TensorFlow深度学习框架,使用PoseNet模型实时采集人体姿态数据,通过LSTM+Attention模型实现人体动作识别,结合MobileSSD进行场景识别,最终实现暴力分拣人体行为视觉识别。结果实验证明,文中提出的视觉识别方法可以实现暴力分拣5种动作的快速、准确识别,LSTM+Attention人体动作分类模型的测试准确率达到了80%。结论基于该方法构建的嵌入式暴
其他文献
目的为了有效克服BP神经网络算法权阈值随机选取造成的模型预测精度不高、结果输出不稳定的问题。方法提出细菌群趋药性(BCC)算法和BP神经网络算法相结合的BCC-BP神经网络算法,采用BCC算法来选取BP神经网络初始权阈值,克服初始权阈值随机选取带来的问题,并将该算法应用到RGB到LAB色彩空间转换模型中。结果按照国家普通印刷品的允许误差范围规定在6个标准色差单位以下的要求,在色差小于6的预测区间,