论文部分内容阅读
为了探明卵形鲳鲹(Trachinotus ovatus)幼鱼形态性状对体质量的影响程度,分别测定其全长(TL)、体长(SL)、头长(HL)等11个形态学指标和体质量(BW)。分别计算形态性状测量值和体质量数值之间的通径系数和决定系数,分析各形态性状对体质量性状的关联程度。分析结果显示,卵形鲳鲹被测量形态性状对体重的相关系数皆达极显著水平(P<0.01);在通径分析中,3月龄卵形鲳鲹仅全长、体宽、体高和尾柄高的形态性状测量值对幼鱼体质量数据的通径系数达到极显著水平(P<0.01),可将其确定为影响体质量的主要性状,其中全长对体质量的直接影响最大(P_2=0.493 6);决定系数分析显示,全长对体质量的决定系数最大,达到24.39%。卵形鲳鲹的4个形态性状与体质量性状的相关指数大小为R~2=0.888 1,说明该被选性状是与体质量关联的主要性状。设全长(X_2)、体高(X_3)、体宽(X_4)和尾柄高(X_(10))为自变量,设体质量(Y)为因变量,建立多元回归方程:Y=-32.217 8+0.252 4X_2+0.378 2X_3+0.440 8X_4+0.634 1X_(10),回归预测的估计值与实际值间差异不显著(P>0.05),故该方程可被用于卵形鲳鲹的实际生产。本研究可为卵形鲳鲹选育工作提供理论依据和测量指标。
In order to explore the effect of morphological traits of Trachinotus ovatus on body weight, 11 morphological indexes including body length (TL), body length (SL) and head length (HL) Quality (BW). Calculate the path coefficient and the coefficient of determination between the measured value of morphological traits and body mass value, and analyze the correlation between the traits of morphological traits and body mass traits. The results showed that the correlation coefficients of morphological traits and body weight of oval 鲳 皆 were all significantly different (P <0.01). In the path analysis, only three-month-old oval 鲳 was only full-length, body width and height The measurement of trailing shank morphological traits had a significant significant effect on body mass data (P <0.01), which could be identified as the major trait affecting body weight, of which the total length had the greatest direct impact on body weight (P 2 = 0.493 6). The coefficient of determination showed that the determination coefficient of the total length of body weight was the largest, reaching 24.39%. The correlation index of 4 morphological traits and body mass traits of Oviform 鲳 为 was R ~ 2 = 0.888 1, indicating that the trait was the main trait associated with body mass. The multiple regression equation was established with the total body length (X 2), height (X_3), body width (X_4) and caudal peduncle height (X_ (10)) as the dependent variable, Y = -32.217 8 + 0.252 4X_2 + 0.378 2X_3 + 0.440 8X_4 + 0.634 1X_ (10). The regression prediction has no significant difference between the estimated value and the actual value (P> 0.05). Therefore, this equation can be used for the actual production of ovale. This study can provide theoretical basis and measurement index for ovipositing breeding.