论文部分内容阅读
为克服基本微粒群算法的早熟问题,借鉴多子种群和自适应的思想,提出了基于两层模型的多子种群自适应多态杂交微粒群免疫算法.该算法首先通过对若干个子种群进行低层自适应多态杂交微粒群操作,改善了子种群的多样性,有效抑制了收敛过程中的早熟停滞现象;然后通过高层免疫克隆选择操作,显著地提高了全局寻优能力,进一步提高了收敛精度.针对函数优化的仿真结果表明:与其他改进微粒群算法相比,该算法具有更快的收敛速度和更高的求解精度,尤其适合高维及多模态优化问题的求解.