分配格上的全序幂格

来源 :模糊系统与数学 | 被引量 : 0次 | 上传用户:caijunever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了分配格上的幂格的偏序关系,给出了分配格上的幂格是链格的充要条件.
其他文献
本文用分裂正定混合有限元方法研究二阶粘弹性方程.首先构造一种新的分裂正定混合变分形式和基于这种分裂正定混合变分形式关于时间的半离散格式,然后绕开关于空间变量的半离
本文介绍求解线性常系数微分代数方程组的波形松弛算法,基于Laplace积分变换得到该算法新的收敛理论.进一步将波形松弛算法应用于求解非定常Stokes方程,介绍并讨论了连续时间
提出了求解一类线性乘积规划问题的分支定界缩减方法,并证明了算法的收敛性.在这个方法中,利用两个变量乘积的凸包络技术,给出了目标函数与约束函数中乘积的下界,由此确定原
引进半群的Cwrpp Rees根、Cwrpp Rees根扩张wrpp半群(CRCE-半群)等概念.解决Cwrpp Rees根扩张wrpp半群的存在性,证明这是一个迄今为止从未涉及的半群类.研究wrpp半群的Cwrpp(
基于求线性矩阵方程约束解的修正共轭梯度法的思想方法,通过修改某些矩阵的结构,建立了求特殊类型的多矩阵变量线性矩阵方程的广义自反解的迭代算法,证明了迭代算法的收敛性,解决了给定矩阵在该矩阵方程的广义自反解集合中的最佳逼近计算问题.当矩阵方程相容时,该算法可以在有限步计算后得到其一组广义自反解;选取特殊的初始矩阵,能够求得其极小范数广义自反解.数值算例表明,迭代算法是有效的.
基于分部的Runge-Kutta离散形式,给出了一种新的三阶辛积分算法,数值试验表明,长时程计算时该算法具有好的控制误差累积的能力;与有限差分法进行空间域离散相结合,通过数值试验进一步说明算法的有效性.注意到位移波动方程通过谱元离散后的微分方程组,完全符合新推导的三阶辛算法离散所需形式,因此将该三阶辛算法与谱元法结合具有很好的优势,并通过对横向各向同性介质弹性波场的模拟,结果显示不但成功模拟了波的
结合第一类完全椭圆积分的迭代算法和Jacobi椭圆函数的恒等式,实现Wangerin函数Snm(μ)的高精度数值计算.进一步,利用数值可视化方法对它的数值计算结果进行分析,总结出Wange
本文针对一维抛物型方程第三边值问题提出了一种紧有限体积格式,该格式形成的线性代数方程组具有对称三对角性质,且不可约占优,可以使用追赶法求解.证明了格式按照离散L~2范数在空间方向具有3.5阶精度,在时间方向具有2阶精度.数值算例验证了理论分析的正确性,并说明了格式的有效性.
针对多层介质中声波的传播问题,将其中偶数(或奇数)层内的声波用一种单双层混合位势的形式来表示,再应用Green定理表示出其余层的声波并形成相应的边界积分方程.如果区域有M层时,传统的边界元方法最终将形成2M个边界积分方程并对应2M个未知函数,而应用上述方法求解该问题时,最终只形成M个边界积分方程以及对应M个未知函数,从而使得求解的方程和未知数的个数都减少了一倍.最后,通过对数值算例的求解,验证了该