论文部分内容阅读
以玉米中水分、蛋白质、脂肪和淀粉4种主要成分含量以及烟叶总植物碱的偏最小二乘近红外光谱(PLS-NIRs)模型传递为例,考察了模型中潜变量个数(nLVs)对模型传递误差的影响。研究发现,根据累积贡献率大于99.9%确定的玉米、烟叶样品PLS-NIRs模型的nLVs分别为1和13,nLVs=1时建立的玉米模型对两台从机样品4个成分的预测值和主机预测值的重现性指标均满足国标要求;nLVs=13时建立的烟叶总植物碱模型经分段直接校正(PDS)后,可使4台从机样品的平均相对预测误差(MRE)小于6%。采用留一交叉