论文部分内容阅读
研究一类非线性对象的建模,提出通用的非线性U模型表达式。在非线性U模型基础之上,提出径向基神经网络PID控制算法,采用梯度下降法与PID位置增量算法相结合,根据径向基神经网络在线辨识非线性被控对象,得出Jacobian信息去修正PID控制器参数,最终完成非线性系统的精确控制。仿真结果证实,采用高精度的非线性U模型及神经网络PID控制算法提高了非线性控制系统的精度。