论文部分内容阅读
为提高社区检测的效率与精度,提出一种随机并行的局部搜索算法。用图模型结构表示复杂系统,将顶点划分成簇。构建贪婪随机自适应搜索过程与路径重连过程,以解决加权图的模块最大化问题。引入一种{0,1}矩阵类特征并定义聚类的距离函数,从而进行顶点的邻域搜索,实现社区的高精度检测识别。实验结果表明,该算法的F1值与NMI指标值均较高。