论文部分内容阅读
粒子群优化算法( PSO)是一种仿生类的全局优化算法,它借助记忆与反馈机制完成了寻优搜索。该算法受到了鸟类觅食活动的启发而得,其基本思想源于对鸟类简化社会模型的研究及行为模拟,其中的每个个体充分利用自身与群体的智能,不断地调整学习,最终得到满意解。该算法常用于求解非线性问题、组合优化问题等。因其具有易理解,易实现,控制参数少,收敛速度快等优点,该算法一经提出就吸引了广泛的关注,逐渐成为一个新的研究热点。然而粒子群优化算法也有些不足,如搜索精度不高,易早熟以及易陷入局部极值等。而且算法在搜索后期也有产生振荡