论文部分内容阅读
选择昆明市作为研究区,以2011年LandsatTM影像为基础数据,通过分析研究区地形特征,提出把研究区进行分区并分别确定高程、坡度决策规则的改进型决策树分类方法,并结合分析的光谱特征规律,在决策分类中引进了比值型指数、NDVI值,构建基于光谱特征和地学辅助知识的决策树信息提取模型,最后对传统计算机自动监督分类方法与决策树信息提取模型方法解译的昆明市土地利用数据的精度进行评价。研究结果表明:基于改进的决策树分类方法进行遥感信息提取的昆明市土地利用数据的Kappa指数比传统监督分类方法提高了0.234,分类