论文部分内容阅读
近年来研究表明使用主题语言模型增强了信息检索的性能,但是仍然不能解决信息检索存在的一些难点问题,如数据稀疏问题,同义词问题,多义词问题,对文档中不可见项和可见项的平滑问题。这些问题在一些领域相关文献检索中显得尤其重要,比如大规模的生物文献检索。本文提出了一种新的基于聚类的主题语言模型方法进行生物文献检索,这主要包括两个方面工作,一是采用本体库中的概念表示文档,并在此基础上进行模糊聚类,把聚类的结果作为数据集中的主题,文档属于某个主题的概率由文档与聚类的模糊相似度决定。二是采用EM算法来估计主题产生项的概率