论文部分内容阅读
针对简单遗传算法(SGA)所存在的缺点和不足,提出了一种新的改进遗传算法一双变异算子GA.该算想法通过将所有产生的子代个体与父代个体混合作为下一代种群,在种群选择前对适应度值较低的个体进行一次变异,然后通过选择、交叉,再一次变异产生新种群,再利用自适应算法改变交叉和变异率及最优保存策略保护历代最优个体,利用matlab软件编程计算,在TSP中得到了较好的优化结果。实例说明,双变异算子的遗传算法能够最大限度使种群多样性,这样最有可能得到最优解,也易突破局部收敛的局限而达到全局最优。