In situ carbon coating for enhanced chemical stability of copper nanowires

来源 :矿物冶金与材料学报 | 被引量 : 0次 | 上传用户:ttjjyy88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Copper nanowires (CuNWs) are promising electrode materials, especially for used in flexible and transparent electrodes, due to their advantages of earth-abundant, low-cost, high conductivity and flexibility. However, the poor stability of CuNWs against oxidation and chemic-al corrosion seriously hinders their practical applications. Herein, we propose a facile strategy to improve the chemical stability of CuNWs by in situ coating of carbon protective layer on top of them through hydrothermal carbonization method. The influential factors on the growth of carbon film including the concentration of the glucose precursor (carbon source), hydrothermal temperature, and hydrothermal time are sys-tematically studied. By tailoring these factors, carbon layers with thickness of 3–8 nm can be uniformly grown on CuNWs with appropriate glucose concentration around 80 mg·mL?1, hydrothermal temperature of 160–170℃, and hydrothermal time of 1–3 h. The as-prepared carbon-coated CuNWs show excellent resistance against corrosion and oxidation, and are of great potential to use broadly in various optoelectronic devices.
其他文献
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential
Petroleum coke is industrial solid wastes and its disposal and storage has been a great challenge to the environment. In this study, petroleum coke was utilized as a novel co-reduction reductant of low-grade laterite ore and red mud. A ferronickel product
A new method is proposed for the recovery of Mn via the direct electrochemical reduction of LiMn2O4 from the waste of lithium-ion batteries in NaCl?CaCl2 melts at 750℃. The results show that the LiMn2O4 reduction process by the electrochemical method on t
To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electro-lysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions
The effect of extrusion temperature and ratio on the microstructure, hardness, compression, and corrosion behavior of Mg–5Zn–1.5Y alloy were analyzed in this study. The microstructural observations revealed that the cast alloy consists of α-Mg grains, and
Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri-ous impacts on the human living environment and health. The traditional oil–water separation methods not only cause easily
Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic compo
ZrC and ZrB2 are both typical ultra-high temperature ceramics, which can be used in the hyperthermal environment. In this study, a method for preparing ultrafine ZrC–ZrB2 composite powder was provided, by using the raw materials of nano ZrO2, carbon black
Hexavalent chromium (Cr(VI)) compound is useful to various industries but is toxic and carcinogenic. In this research work, we fab-ricate an amperometric sensor for the determination of Cr(VI), using a titanium dioxide (TiO2)-reduced graphene oxide (rGO)
8-hydroxyquinoline (8-HQ) intercalated layered double hydroxides (LDH) film as underlayer and sol–gel layer was combined for active corrosion protection of the AM60B magnesium alloy. The LDH, LDH/sol–gel, and LDH@HQ/sol–gel coatings were analyzed using th