Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究

来源 :燃料化学学报 | 被引量 : 0次 | 上传用户:sngt73
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本研究选取菲为模型化合物,以强化芳烃吸附为目标,采用等体积浸渍法制备了系列Pt-Ni/NiAlOx催化剂,系统考察了Pt掺杂量对催化剂结构和菲加氢饱和性能的影响.结果表明,当反应温度300℃、氢气压力5 MPa、重时空速52 h?1时,相比Ni/NiAlOx催化剂,掺杂0.5%Pt的0.5Pt-Ni/NiAlOx催化剂上全氢菲选择性在反应8 h后由40%提升至67%,且表观反应速率和转化频率分别由1.53×10?3 mol·kg?1·s?1和14.64×10?3 s?1提升至1.81×10?3 mol·kg?1·s?1和22.16×10?3 s?1.这主要归因于金属Pt适宜的掺杂量提高了金属Ni缺电子结构的稳定性,促进芳烃吸附,提升了菲加氢饱和性能.
其他文献
在5%H2S/N2气氛,不同预硫化温度下制备了系列硫铁催化剂,并在5MPa的1%H2S/H2气氛、360℃下研究了其催化萘的加氢活性.借助MES、XRD和XPS等表征手段,探究了催化剂在不同预硫化温度及反应条件下组分转变规律.结果表明,预硫化过程是硫由表面向内部,依照FeS2→FeS、Fe1?xS→Fe3S4→Fe2O3顺序渗硫的过程,而升高温度有利于硫向体相内的传递;接触1%H2S/H2气氛后晶粒由外向内各组分均快速转化为Fe1–xS的过程;调控预硫化条件可以实现活性组分Fe1–xS的含量高、晶粒小,于
利用高分辨透射显微镜分别对煤和生物质快速热解炭黑、天然气非催化部分氧化小试装置炭黑和工业装置炭黑、商业天然气炉法炭黑和煤焦油炉法炭黑等六种样品的形貌结构进行了表征;基于常压热重分析仪非等温法(50?800℃)对炭黑的着火点、氧化反应速率进行了研究,获得了炭黑的氧化反应动力学参数.研究表明,不同的炭黑理化性质差异较大,煤和生物质快速热解炭黑的球形度更高,粒径较大;天然气非催化部分氧化小试装置炭黑在较低温度下形成,呈现被碳囊包裹的形态;天然气非催化部分氧化工业装置炭黑呈现中空结构,粒径较小.非催化部分氧化小试
采用煤矸石(CG)作含碳载体、淀粉作补充C源、硝酸镍作Ni源,借助液相浸渍结合碳热还原工艺制备Ni/C/CG复合型微波吸收材料;研究碳热还原温度对材料组成、微观结构与性能的影响.结果表明,碳热还原温度会影响碳与Ni的结晶状态及Ni微粒大小,进而对材料的电磁性能特别是介电性能产生显著影响.得益于良好的阻抗匹配特性与强的微波衰减能力,在600?800℃较宽的温度范围内制备得到的Ni/C/CG复合材料均显示出优良的微波吸收性能.其中,800℃热处理样品的最低反射损耗可达?20.9 dB,相应的有效带宽为3.8
利用小试精馏装置对生物油模型化合物进行蒸馏实验,通过调节系统的真空度将生物油模型化合物分别在常压和减压状态下进行蒸馏,分析并总结了馏分中各组分的变化规律.结果表明,随着系统内真空度的不断升高,生物油模型化合物的总馏出率不断增加且结焦率不断降低,水分更容易被蒸出,馏分中有机物的初馏温度降低而馏出率增加.因此,增大真空度可有效分离生物油模型化合物的组分并降低蒸馏的能量损耗;当真空度为?0.08 MPa时,生物油模型化合物的蒸馏效果最好,其中,乙酸和糠醛的馏出率分别可达99.50%和65.88%、苯酚和愈创木酚
以碳酸丙烯(PC)和甲醇为原料,经酯交换反应合成的多功能、环保的碳酸二甲酯(DMC)是一种绿色、节能的合成方法.CaO固体碱催化剂对该反应具有良好的催化性能,但其再生性不理想.以F-Ca-Mg-Al水滑石(LDHs)为原料,制备了一系列不同NaF用量的固体碱催化剂,并对其进行了表征和酯交换反应测试.与不加氟的FCMA-0催化剂相比,经氟改性后的催化剂的比表面积、碱量、催化活性等性能均有明显提高.催化活性由高到低依次为:FCMA-0.8>FCMA-0.4>FCMA-1.2>FCMA-1.6>FCMA-0,这
随着现代社会的快速发展,人们对能源的需求与日俱增,目前,发展中国家仍以化石燃料为主要能源投入,其燃烧产生的二氧化碳排放带来的温室效应和环境问题已引起举世关注.因此,通过对二氧化碳进行捕集、封存与转化利用,实现碳减排和碳中和目标成为目前研究的热点.其中,二氧化碳基高分子材料的制备在实现二氧化碳资源化利用的同时,也为聚合物的绿色生产提供了新思路.基于此,本文综述了二氧化碳在聚氨酯中的资源化利用现状,着重对其在材料中的物理、化学应用进行了阐述,并详细介绍了在转化利用过程中的制备技术和方法.
采用油酸铁热分解法制备出不同尺寸(4?19nm)的γ-Fe2O3纳米颗粒,在350℃下,于5%CO/He、5%CO/10%H2/He和5%CO/20%H2/He的三种气氛中,使用原位XRD反应装置研究了γ-Fe2O3纳米颗粒的碳化过程与物相变化规律,同时结合Raman、CO-TPR和TEM等手段对样品进行了表征.结果表明,γ-Fe2O3纳米颗粒完全碳化后会形成稳定比例的χ-Fe5C2和θ-Fe3C的混合相;在相同碳化气氛下,随γ-Fe2O3颗粒尺寸增大完全碳化所需时间缩短,尺寸较小的γ-Fe2O3颗粒表面
利用水热法和溶剂热法制备了BiOCl、BiOBr和BiOI三种光催化剂,通过XRD、SEM、光电流密度与UV-vis DRS表征了光催化剂的晶体结构、表面形貌与光电性能,DFT计算结果表明,随着卤素原子序数升高,光催化剂导带附近的费米能级的分散度降低,禁带宽度变小.在可见光照射下,通过水溶液中罗丹明B的降解效果来评价光催化剂的光催化活性,BiOI具有最好的光催化活性,60 min内,罗丹明B的降解效率达到100%,同时通过自由基捕获实验探究了卤氧化铋光催化降解过程的主要活性基团.
采用水热法制备了Mo/Sn物质的量比为1:2的Mo1Sn2催化剂,通过改变焙烧温度(400?700℃),调控了钼锡催化剂的结构,并研究了催化剂结构变化对二甲醚(DME)选择氧化制甲酸甲酯(MF)性能的影响.发现400℃焙烧的Mo1Sn2催化剂具有良好的催化氧化二甲醚生成甲酸甲酯的性能,在110℃、常压条件下,DME转化率为9.2%,MF选择性可达86.9%,并且无COx生成.采用XRD、Raman、XPS、TPD、H2-TPR和in-situ FT-IR等表征手段对催化剂的结构和表面性质进行了系统研究.结
制备低成本、高活性、高稳定性的铂(Pt)基氧还原反应(ORR)催化剂是质子交换燃料电池(PEMFC)大规模商业化应用的关键.以钴(Co)等非贵金属与Pt掺杂制备二元合金PtM催化剂不仅可以减少Pt用量,还可以获得高于Pt金属催化剂的ORR催化活性和稳定性.本研究使用浸渍还原法制备碳载铂钴ORR催化剂,通过控制热处理还原温度来控制纳米颗粒的结构、晶相、尺寸等,从而改善催化剂的ORR性能.XRD、TEM和电化学分析结果综合表明,热处理温度对纳米颗粒合金度和平均粒径有显著的影响,平均粒径和合金度随着热处理温度升