Nonlinear optical properties of graphene-based materials

来源 :Chinese Science Bulletin | 被引量 : 0次 | 上传用户:loveliness900619
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Graphene,a two-dimensional carbon atom sheet,has attracted tremendous attention and research interest because of its exceptional physical properties.Graphene has high mobility and optical transparency,in addition to flexibility,robustness and environmental stability.The main focus so far has been on fundamental physics and electronic devices.However,because the linear dispersion of the Dirac electrons enables ultrawideband tunability,we believe its true potential lies in photonics and optoelectronics.In this review,we introduce recent advances in the nonlinear optical properties of graphene-based materials.The rise of graphene in nonlinear optics is shown by several recent results,ranging from saturable absorbers and the four-wave mixing effect to giant two-photon absorption,reverse saturable absorption and optical limiting.The relevant forms of the graphene-based materials include pure graphene,graphene oxide and graphene hybrids. Graphene, a two-dimensional carbon atom sheet, has attracted tremendous attention and research interest because of its exceptional physical properties. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. The main focus so far has been on fundamental physics and electronic devices. However because the linear dispersion of the Dirac electrons enables ultrawideband tunability, we believe its true potential lies in photonics and optoelectronics. in this review, we introduce recent advances in the nonlinear optical properties of graphene-based materials. The rise of graphene in nonlinear optics is shown by several recent results, ranging from saturable absorbers and the four-wave mixing effect to giant two-photon absorption, reverse saturable absorption and optical limiting. The relevant forms of the graphene-based materials include pure graphene, graphene oxide and graphene hybrids.
其他文献