论文部分内容阅读
针对多通路语音信号的欠定卷积混合模型,提出一种基于非负矩阵分解(NMF)的语音盲分离方法。该方法使用高斯分量对源信号的短时傅里叶变换(STFT)进行表示,高斯分量由基于板仓-斋藤(Itakura-Saito(IS))散度的非负矩阵分解的因子所组成。使用极大期望值算法(EM)求解参数,并对信号进行重组。该方法被应用到双声道立体声信号的盲分离实验,实验结果表明了该方法的有效性。