论文部分内容阅读
针对支持向量机训练时间长、分类速度慢、故障诊断率不高等问题,引入模糊算法对支持向量机进行优化.先利用模糊C均值求得样本中心,再利用支持向量机中的二分类法对故障进行准确定位,达到诊断的目的.仿真结果表明,相比于支持向量机、BP神经网络和改良三比值法,改进后的支持向量机的故障诊断准确率最高.