Electron Acceleration by a radially polarised cosh-Gaussian laser beam in vacuum

来源 :理论物理通讯(英文版) | 被引量 : 0次 | 上传用户:greattomliu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,a radially polarised cosh-Gaussian laser beam (CGLB) is used to study the electron acceleration produced in vacuum.A highly energetic electron beam can be achieved by a CGLB,even with comparatively low-powered lasers.The properties of a CGLB cause it to focus earlier,over a shorter duration than a Gaussian laser beam,which makes it suitable for obtaining high energies over small durations.It is found that the energy gained by the electrons strongly depends upon the decentering parameter of the laser profile.It is also observed that for a fixed value of energy gain,if the decentering parameter is increased,then the intensity of the laser field decreases.The dependence of the energy gained by electrons on the laser intensity and the laser-spot size is also studied.
其他文献
In this paper,we derive the Lindblad and Redfield forms of the master equation based on the Born-Markov master equation with and without the secular approximation for open multi-level quantum systems.The coefficients of the equations are re-evaluated acco
The ability of the radial basis function (RBF) approach to extrapolate the masses of nuclei in neutron-rich and superheavy regions is investigated in combination with the Duflo-Zuker(DZ31),Hartree-Fock-Bogoliubov (HFB27),finite-range droplet model (FRDM12
Quantum algorithms have been developed for efficiently solving linear algebra tasks.However,they gen-erally require deep circuits and hence universal fault-tolerant quantum computers.In this work,we pro-pose variational algorithms for linear algebra tasks
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes,radiation effects and chemical reactions.The main aim of this research is to address entropy generation due to magnetic field,nonlinear thermal
The trace norm of matrices plays an important role in quantum information and quantum computing.How to quantify it in today\'s noisy intermediate scale quantum (NISQ) devices is a crucial task for information processing.In this paper,we present three va
The quantum many-body problem (QMBP) has become a hot topic in high-energy physics and condensed-matter physics.With an exponential increase in the dimensions of Hilbert space,it becomes very challenging to solve the QMBP,even with the most powerful compu
The collision frequencies of electron-neutral-particle in weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied.The average collision frequencies of electron-neutral-particle in plasmas are accurately derived.We find th
We discuss black hole solutions of Einstein-A gravity in the presence of nonlinear electrodynamics in dS spacetime.Considering the correlation of the thermodynamic quantifies respectively corresponding to the black hole horizon and cosmological horizon of
The nonlocal nonlinear Gerdjikov-Ivanov (GI) equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr(o)dinger equation.The Darboux transformation is a successful m
For a one (2+1)-dimensional combined Kadomtsev-Petviashvili with its hierarchy equation,the missing D\'Alembert type solution is derived first through the traveling wave transformation which contains several special kink molecule structures.Further,afte