论文部分内容阅读
用粒子群优化算法求解多目标问题容易陷入局部最优,为此本文提出了一种分组粒子群多目标优化算法。该算法将决策空间分成Q个子空间,每个子空间随机的分配N个粒子,这Q个粒子群分别在各自的空间进行独立搜索。为保证每个种群的搜索多样性和遍历性,用混沌序列对各组粒子位置进行初始化,同时对各组进行基于聚集距离的粒子择优进化。由典型多目标函数的优化实验结果表明,经过适当的分组,该算法能迅速逼近非劣最优解集,效果令人满意。